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SUMMARY 
In many popular solution algorithms for the incompressible Navier-Stokes equations the coupling between the 
momentum equations is neglected when the linearized momentum equations are solved to update the velocities. 
This is known to lead to poor convergence in highly swirling flows when coupling between the radial and 
tangential momentum equations is strong. Here we propose a coupled solution algorithm in which the linearized 
momentum and continuity equations are solved simultaneously. Comparisons betwem the new method and the 
well-known SIMPLEC method are presented. 
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1. INTRODUCTION 

The work described in this paper is partly motivated by the design engineer's need to calculate flow in 
the cavities formed between the rotating discs in gas turbine engines. These flows can be dominated by 
rotational effects and present difficulties for segregated solvers such as the SIMPLE algorithm' and its 
derivatives. In these methods the linearized momentum equations are solved successively without 
accounting for the coupling between equations. Such difficulties have been documented previously, 
e.g. in Reference 2. Various ad huc measures have been proposed in order to improve convergence of 
the method (see e.g. References 3-5). Although it has been clearly demonstrated that the variations of 
the SIMPLE algorithm can give satisfactory solutions, the need to tune parameters for the iterative 
solution and the computational cost of the calculations still limit the application of the method. In the 
present work we propose a coupled solution of the linearized governing equahons and compare the 
performance of the new method with the segregated SIMPLEC algorithm.6 Whilst a coupled approach 
r e q h  more core memory than a segregated approach, this is not a serious limitation on most current 
computers and it may offer advantages in terms of robustness, CPU time requirements and level of 
convergence achieved. 
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For incompressible flow there is an intrinsic difficulty in solving the governing equations, namely 
that the divergence-free constraint is effectively the ‘equation for pressure’. Thus a discretized Navier- 
Stokes operator will always have a zero diagonal block, making iterative solution methods prone to 
divergence. (Typically, diagonal dominance is the key to rapid convergence of iterative methods.) The 
standard approach used to circumvent this difficulty is to uncouple the equations via a so-called 
segregated formulation. The divergence-free condition is replaced by a ‘derived equation’, usually a 
pressure Poisson equation. This projects a nondivergence-free velocity onto a divergence-free field as 
follows. Given an approximate velocity solution u, we construct a divergence-free velocity u* by 
introducing a ‘pressure’ L and solving the system 

grad 3, + u = u * ,  

&VU* =o.  
Taking the divergence of (1) gives 

(3) div grad 3. + div u = div u = 0. 

Hence the pressure satisfies a Poisson equation 

V2L = -div u. (4) 

Substituting this value of A into (l), the projected velocity u* is divergence-free. The pressure Poisson 
equation (4) is the foundation of the popular SIMPLE class of algorithms.’ 

The projection (1H2) is also the basis of the transient flow algorithms proposed by Gresho’ and 
Gresho and Chan: which are in widespread use within the finite element community. A W h e r  point, 
discussed at length in Reference 7, is that the use of the derived equation for pressure (4) instead of the 
incompressibility constraint (2) brings a requirement that a pressure boundary condition be satisfied 
(or imposed) everywhere on the boundary of the flow domain. The Navier-Stokes equations only 
require that a hydrostatic pressure be specified. In practice a Neumann condition is commonly 
aSSUmed.  

A potentially more robust alternative to the SIMPLE philosophy is to retain the coupling in the 
equations in a l l l y  implicit manner. Finite element codes for incompressible steady state flows (e.g. 
FIDAP? typically take this approach, with the non-linearity handled via a Picard or Newton iteration. 
In general the fully implicit Jacobian systems are solved directly, often using a non-symmetric frontal 
solver. In this work the need for a good approach for three-dimensional problems motivated our use of 
inexact Newton-methods, where an exact Jacobian solve is replaced by a ‘cheap’ iteration strategy. 
Unfortunately, as we shall see later, the lack of diagonal dominance referred to above makes these l l l y  
coupled systems of equations extremely difficult to solve iteratively. An efficient robust non-symmetric 
iterative solver is needed and the issue of preconditioning is all-important. To this end our results 
complement those in References 10 and 1 1. it should be emphasized that using a direct solver for the 
Jacobian systems12 may well have led to a more efficient implementation of our coupled algorithm for 
the two-dimensional discretizations considered herein. 

A W e r  alternative to the SIMPLE philosophy is the use of pseudo time-stepping. mically a time- 
marching scheme will add a ‘mass mahx’ to the diagonal of the coefficient matrix. For sufficiently 
small time steps, diagonal dominance is achieved and the equations may be solved relatively easily. 
Although time-marching methods are not considered further here, we note that various degrees of 
coupling are possible within the time-stepping framework. Thus the present work has some relevance 
to this type of solution method. 

The goal then is to compute steady state axisymmetric swirling flows with a finely tuned SMPLEC 
method and compare its efficiency with a coupled solution algorithm. In Section 2 we present the 
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mathematical model and describe two test problems which we will use to compare algorithms. In 
Section 3 we describe a segregated method for our problems based on the SIMPLE philosophy. In 
Section 4 we present a coupled formulation of the model and in Section 5 we present results of 
numerical experiments in which we derive a reasonable set of parameters for our method. We compare 
the performance of the methods for our two representative flow examples in Section 6 and finally, in 
Section 7, present our conclusions. 

1.1. Notation 

Here u, v and w denote the continuous velocity components in the axial, radial and tangential 
directions respectively and p denotes the pressure. We discretize the continuous Navier-Stokes 
equations, transforming the continuous variable (u, v, w,p)  to the discrete variables (u, v, w, p) or 
(v, PI. 

We use the equivalent notation 

A, 0 0 C, u [i" 1 ;: L1[,1=[;] 
to denote the linear system that our coupled solver generates. 

2. MATHEMATICAL MODEL 
We consider the system of axisymmetric steady incompressible Navier-Stokes equations in a 
cylindrical polar co-ordinate system (r, 8, z) as 

- i a  - -@mv)+z@U2)=-~+pv2u ,  a 
r &  

i a  a w 
r a r  az 9 - - @m) + -(puw) = p(v% - "> - p 7, 

au i a  -+- -(rv) = 0, 
& r ar 

where we define the discrete differential operator 

(5) 

(7) 

p is the density (assumed constant) and p is the dynamic viscosity (assumed constant). Velocities are 
specified via a Dirichlet condition at all points on the bounda~~. 

In the segregated approach (described in Section 3) the pressure terms and cross-terms in the 
momentum equations (5H7) are treated semi-explicitly. Although the individual linear systems thus 
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Figure 1. Expanding grid (17 x 17) 

generated are easy to solve, there is no coupling between the equations, resulting in poor convergence 
of the non-linear iteration as the rotational rate increases. In our approach (described in Section 4) the 
terms on the right-hand side of (5x7) are treated implicitly, coupling the three momentum equations 
and the incompressibility constraint. 

Our starting point for solving these equations is the computer program described in Reference 4. 
When the number of multigrid levels in this code is specified equal to one, the solution procadure 
reverts to the SIMPLEC algorithm. We use a finite volume approximation on orthogonal Cartesian 
grids with either a uniform or a non-uniform spacing. The problem domain is discretiztd on a 
rectangular two-dimensional grid making use of the axisymmeby of the problem. In the non-uniform 
case the grid spacing h expands away from the boundaries by a fixed factor of 1.2 (see Figure 1). This 
is because for high Reynolds number flows it would be computationally expensive to use a uniform 
grid fine enough to accurately capture the flow close to the walls of the cavity. A standard staggered 
grid discretization has been used, consistent with most earlier work, where axial and radial velocities 
are evaluated on cell faces and pressure and swirl velocities are evaluated at cell centres (see Figure 2). 

The two test problems are now described. 

2.1. Problem I :  the rotating inner cylinder problem 

The general problem is the study of the flow of fluid contained in an annulus between two infinitely 
long concentric cylinders of radii rl and rz (r, < r2) which are rotating about the same axis with 
angular velocities Q, and QZ.l3 We consider the special case where the outer cylinder is fixed and only 
the inner cylinder rotates (with angular velocity Ql = 1 -O), i.e. Q2 = 0. This problem has a rotational 
Reynolds number Reo = Ql<p/c( = 2.2 (see Figure 3). 

Figure 2. ReSam control volume showing stagged grid arrangement 
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F i p  3. Problan l-rotating inner cylinder problem (SI units) 

The problem thus defined has the general analytic solution 

u(r, z)  = 0,  (9) 

c1 w(r, z) = - + C2r, r 

where P, is a hydrostatic pressure constant and the constants C, and C2 are defined as 

Q24 - Qd 
4-4 4-4 * 

9 c, = (Q, - Q2><4 c, = 

The grid used in this test problem is uniform, since the Reynolds number of the flow is low. 

2.2. Problem 2: the rotating can@ problem 

The bounda~~ conditions for this problem are shown in Figure 4. Here Q is the angular velocity of 
the cavity. This has been varied to give rotational Reynolds numbers of 250, 2500 and 2.5 x lo4. 
There is a net radial outaow through the cavity corresponding to a non-dimensional mass flow 
parameter C,(= m/pr2)  of 192.0. This and similar flows have been studied in some detail by Chew et 
&.I4 and adopted as benchmark test cases in several numerical studies, e.g. References 4 and 15. 

Contours of the axisymmetric streamfunction from a solution of this problem at a Reynolds number 
of 2500 are shown in Figure 5. Various flow regions may be identified. On the discs and outer 
cylindrical shroud, boundary layers are formed. These an often ref& to as Ekman-type and 
Stewartson-type layers respectively after analytical work by these authors. Away from the boundary 
layers a source region forms near the inner cylinder and a rotating core develops in the outer part of the 
cavity. In the source region the flow approximates to a free vortex. In the rotating core the radial and 
axial components of velocity vanish and the tangential component becomes independent of the axial 
co-ordinate (but varies radially). At higher Reynolds numbers the boundary layers become narrower, 
the r;ldial extent of the source region is reduced and the rotating core occupies more of the cavity. 
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u = 0, u = 8.7578 x w = Qr, 
r = r, = 0.190 --- 

u = o  
v = o  ::: w = Qr ri w = Q r  

r = rl = 0.019 --- 
I 

= 0, u = 8.7578 x lo-’, 1 w = Qrl 

z = 0.0507 t = O  

F i p  4. Roblem 2--rotating cavity problem; R q  = 2.5 x Id (SI units) 

Most of our numerical experiments are carried out at a Reynolds number of 2500 in order to avoid 
excessive computing times, although this flow is still sufficiently complicated to allow a useful 
assessment of our method. The grid used for the discretization in this example, as mentioned above, 
expands away from the walls of the domain by a factor of 1.2. Therefore under refinement we generate 
a non-nested set of grids. 

3. A SEGREGATED APPROACH 

We first define the block diagonal matrix 

A,,,, 0 0 

.B-[: f v v  

The SIMPLE algorithm for misymmetric steady incompressible flow in cylindrical polar cosrdinates 
is stated in Algorithm 1. Notice that in steps 3 and 4 we use the updated (starred) quantities as soon as 
they are available. Note also that underrelaxation may be applied at steps 2 4  and 7. 

The variants of the SIMPLE algorithm obtain new values for the velocity and pressure fields (in 
steps 5 and 6) in different ways. For example, at step 6, whereas SIMPLE uses the diagonal matrix 
iB = (AB) (the diagonal of AB), the SIMPLEC method uses the approximation 

= di%(AB) - C A,, 
n. s. c. w 

where C ,,, s, c, ,,.AB denotes the diagonal matrix of the sums of the nearest neighbours to each element 

Figure 5. Problan 2--solution for m-v stmmhch on (percentages of maximum sheamfunction) 
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Algorithm 1. The SIMPLE algorithm 

1. Gucss initial velocity and pressure fields m, VO. wo and po. 

Fori=O.l, ..., do: 
2. 

3. 

4. 

5. 

6. 

7. 

Solve for u*: 

Solve for v*: 

i a  a 
- -(Prv,v*) + -(p.'v') - p 
r i k  B 

Solve for w*: 

Obtain correctiolls for the pressure field p' using the pressure Poisson @ressure correction) equation 

where 2, is an approximation to A, which will be more fully explained shortly. 

Obtain comcticms for the velocity field U' using p' and the equation 

div ;re' grad p' = -div u*, 

U' = ;le' grad p'. 

u,+1 = u* + U'. 
Update the velocity and pressun fields using the relations 

P,+1 = P, + P'. 
If converged, then stop. 

on the computational grid. The SIMPLER algorithm uses the pressure correction matrix to correct the 
velocities, but a separate pressure equation is used to calculate the pressurc before the solution of the 
momentum equations. Note that since 2, is always a diagonal matrix, it is trivial to invert. The amount 
of underrelaxation required varies with the problem to be solved, but generally it increases as the 
Reynolds number of the problem incmses. The key to the success of the process is that the small 
linear systems in steps 2-5 need not be solved exactly. We address each of these types of equation 
below. 

3.1. The momentum equations 

These systems are 'easily' solved if two conditions are satisfied. 

1. A hybrid finite differencing scheme16 is used, which employs second-order central differencing 
on both convection and diffusion terms but automatically modifies the convective differtncing 
procedure to an upwind scheme when the local cell Reynolds number exceeds two. This ensures 
that the discrete opetator is diagonally dominant at high (2 2) cell Reynolds numbers, although 
in this case only first-oder accuracy is obtained. 

2. A relaxation method is applied which follows the flow direction. In practice this can be difficult, 
since typical problems have no overall flow direction (e.g. a circulating flow). In such cases an 
alternating line relaxation method is usually a good choice of solver. (For example, here we 
typically use two to four alternating line Gauss-Seidel sweeps per linear solve.) 
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3.2. The prressrtre comction equation 

This is a standard elliptic quation and would be symmetric positive definite except for the assumed 
Neumann boundary conditions for pressure. In this case the pressure Poisson matrix has one zero 
eigcnvalue. Even though the system is singular, it can be effectively solved using relaxation methods as 
above or suitably preconditioned conjugate gradient (CG) or conjugate residual (CR) methods." Here 
the alternating line Gauss-Seidel method is again used. 

3.3. Gosman et a1.h mod$cation 

In the case of highly swirling flow there may be regions in which the centripetal force is balanced 
solely by the radial pressure gradient. In this case the dominant terms in the radial momentum equation 
(6) in the majority of the computational domain are 

i.e. the pressure gmhent and the rotation term involving tangential velocity. However, we are solving 
this equation for the radial velocity v. We would therefore like to modify our equations to overcome the 
problem of the strong coupling between the radial and tangential momentum equations. 

If we make the assumption that as the radial velocity component increases we observe a proportional 
decrease in the corresponding tangential velocity, the second term in (13) can be written as 

PW: - - Qp Wi(V* - VJ, 
r r  

where a is a constant r e f e d  to below as the ~0sman 
Lonsdale and Walsh" demonstrate the effectiveness of the Gosman modification. They show that 

with a suitable choice of a, solution times can be at least halved compared with the unmodified 
SIMPLEC itemtion. 

4. A COUPLED APPROACH 

In our approach the non-linear cross-terms involving w on the right-hd side of equations (6) and (7) 
are linearized and treated implicitly using a Newton-type scheme in which products of variables are 
rtpresented by 

X i + l Y i + l  = ' i + ~ Y i + x i Y i + ~  -XiYiy 

where the index i refers to the non-linear iteration number. In addition, pressure derivative terms are 
treated implicitly. We state our coupled algorithm in Algorithm 2. 
Thus the iteration gives rise to a coefficient matrix that can be expressed in the block form 

which must be solved at each outer non-linear iteration. In the case of a non-staggered grid formulation 
in a Cartesian cosrdinate system the blocks Cu and C, will be equal to the transposes of 8, and B, 
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Algorithm 2. A coupled algorithm 

1. Guess initial velocity and pressure fields w. VO, wo and po. 

Fori=O, 1, ..., 
2. Solve thc coupled system below for (0, v, w, p)*: 

1 !@rV,O*)+-@qU a *  )-pv 2 u +-=fr,, aP* 
r i k  & i)r 

l a  a ( ;) 2pwiw* +- ** = t,, 
& 

- -@r$) + -@I$) - p v2v* - - - - 
r C  a? r 

l a  * a  * - -@rviw )+-@u,w ) - p  
r i k  az 

ao* i a  * -+--(m) =g. 
& r C  

3. Apply undmlaxation to all variables in the solution according to 

I,+, = &I* + (1 -&)I,. 

If converge4 then stop. 

respectively. However, here they are only approximate transposes owing to the non-coincident 
variables and the curvaturt effect of the polar modinate system. The system matrix is non-symmetric 
and highly indefinite because of the zero diagonal block. It is also singular (with a null space of 
dimension one) owing to the hydrostatic pressure mode. As in the segregakd casc above, the iterative 
solver is applied directly to the singular system-no explicit specification of a pressure datum is 
required. 

The eigenvaiue spectra of two typical matrices (1 5 )  at two Reynolds numbers have bcen computed 
(on a coarse grid) for our sccond example and are shown in Figure 6. These spectra suggest that the 
unpmonditioned linear systems are going to be extremely expensivddifficult to solve iteratively. 
Notice that the imaginary parts of the eigenvalues are relatively small, however. As wt shall set, we 
can improve the properties of these linear systems substantially by preconditioning. 

(a) Re, = 2.6 x Id (b) Rcr = 2.5 x 10' 

Figure 6. Pmblem 2 4 g d u e  spectn of typical unpmnditioned linear systems; N = 422 
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o m  

O B I  

o m 1  

1- 

To solve such a system requires a robust iteration such as the generalized minimal residual algorithm 
(GMRES)'* or the quasi minimal residual algorithm (QMR).I9 In our application GMRES was 
ineffective as an iterative solver. Once restarted, the convergence of the method became extremely 
poor. For this reason we do not consider this method further, all following results rely on the use of the 
QMR method as linear solver. 

7 

: 

7 

~ 

4. I .  The QMR algorithm 

The QMR algorithm is designed to be robust and overcome the limitations of methods such as the 
biconjugatc gradient (BCG) algorithm which are liable to break down or behave in an unstable manner. 
The method is usually used in conjunction with the look-ahead Lanczos algorithmzo and therefore 
avoids almost all possibilities for breakdown typically associated with the BCG method. The look- 
ahead Lancms algorithm 'steps over' iterations where the Lanczos algorithm (which underlies 
methods such as biconjugate gradients) would either break down completely or cause large oscillations 
in the residual norm. The convergence of the method in the 2-norm is thus nearly monotonic (see 
Figure 7) and comparable with unrestarted GMRES. However, unlike the GMRES algorithm, the 
method uses only a three-term vector recursion to generate each new iterate and is therefore only about 
as expensive as the BCG algorithm. We found that a large number of look-ahead steps were required 
during the solution of the linear system that we generated, suggesting that other iterative methods 
would perform erratically or even diverge when solving these problems." 

4.2. Preconditioning 

preconditioning is essential. If we perform block Gaussian elimination on the system (15), 
From experiments in solving linear systems generated by our algorithm, it is clear that 

we obtain the solution 

p = -(BA-'C)-'(g - EA-'f), u = A-'(f - Cp). 
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Therefore our strategy is to approximate the block convection-diffusion operator A and the matrix 
BA-I C within a block preconditioner of the form 

M = [ A  O 1. o BA-V 
In general an effective preconditioner should cluster the eigenvalues of the preconditioned system away 
from the origin.22 We must solve one linear system of the type 

M Y = Z  

and one of the type 

M'y = z 

at each iteration, so the preconditioner M needs to be such that the linear systems (1 6) and (1 7) can be 
solved cheaply. Before presenting numerical results, we show some eigenspectra of the preconditioned 
system for various preconditioners M that we have used. 

We approximate the matrix BA-' C by a dqona l  matrix, the scaling of which takes into account the 
rotational Reynolds number and the grid and domain dimensions of the problem in all the following 
cases (see Reference 21 for details). Later we also apply one or two sweeps of the alternating line 
Jacobi method to a standard five-point approximation to the Poisson equation which approximates 

We firstly 'approximate' the convection4ffusion block A by A itself. The preconditioning matrix M 
thus formed then represents the best available using our approach. Figure 8 shows the effect of this 
preconditioning on the same linear systems as before. The eigenvalues are wellclustered with small 

In practice, because of the need to solve equations (1 6) and (1 7), the use of an exact convectio~ 
diffusion block will be too expensive. Therefore we use a diagonal scaling @S) or a few sweeps of a 
line relaxation method applied to each of the diagonal blocks of A ,  as an approximation to the 
convection-diffiion block A. Figure 9 shows the result of using the diagonal of AB to approximate A 
and Figure 10 shows the result of using two sweeps of alternating line Jacobi (ALJ(2)) (applied to each 
diagonal block of AB) to approximate A. The eigenvalues are loosely clustered when using a diagonal 
approximation. However, a much more well-defined cluster begins to appear when we apply two 
sweeps of alternating line Jacobi, although a few eigenvalues appear to be more spread out. Applying 
more than two sweeps of alternating line Jacobi does not appreciably cluster the eigenspectrum of the 

BA- C. 

imasinarv Parts. 

:i---I 
4 

-10 -1 0 

f o  4 
4 

I 

4.6 0 05 1 1 . 6  2 ZS Od 0 05 1 1.6 2 26 
Iy Rrl 

(a) RLr = 2.5 x Id (b) Re# = 2.5 x 10' 

Figme 8. R o b l a  2 - c i g d u e  spectn of typical c u d  AIDS-pwonditiaKd linear systems; N = 422 
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(a) JZec = 2.6 x lp (b) Re, = 2.5 x lo' 
Figure 9. RobIan 2-igcavalue spectra of typical DS/DS-preconditioned linear systems; N = 422 

preconditioned system further. This is presumably due to the fact that the offdiagonal blocks in A 
which are not included in the matrix A, are not taken into account by the preconditionex 

4.3. Stomge 

The SIMPLE method was proposed when computer storage was at a premium. Any new method 
may take advantage of the relatively abundant memory to be found on most supercomputers of today. 
If we denote the maximum number of equations in any of the four variables by N, and the total number 
of equations in the coupled system by N, so that N sz 4Nv, then the core of the SIMPLE algorithm 
quires six vectors of size Nv for coefficient and right-hand side storage plus four vectors of size N, 
for the unknowns. The coupled solver requires 3 1 vectors of size N,  for coefficient storage; the QMR 
algorithm requires 64 vectors of size N,  and the lookahead Lanczos algorithm with 10 Lanczos vectors 
requires another 136 vectors of size N,. Thus the coupled solver requires a total of 221N, extra REAL 
storage locations. In particular, using REAL*8 arithmetic, a problem defined on a 65 x 65 grid will 
reqUire about 7-8 MB extra storage compared with the SIMPLE algorithm. 

5 .  NUMERICAL RESULTS FOR THE COUPLED SOLVER 

The following notation is used in the remaining sections: 

a Gosman factor 

! 
-10 1 , : , , *  -10 i , 4 ,  ! 

04  0 0.5 1 1.5 2 25 0.6 0 0 5  1 15 2 2.5 
Rul Rul 

(a) Rcr = 2.5 x Id (b) Rcr = 2.5 x 10' 

F i g m  10. RobIan 2-1 of eigewalue specba of typical A L J ( 2 ) / D S - ~ t i o ~ c d  linear systems; N = 422 
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B1 

8 2  

B 3  

& 

non-linear convergence criterion-once all RMS changes in solution fall below this level, the 
solution is considered converged 
linear convergence criterion-once the linear residual is reduced by t h i s  factor, the current linear 
solution is considered converged 
underrelaxation toleranco--once all non-linear residuals are below this absolute level under- 
relaxation is applied to the current solution 
underrelaxation factor for coupled system. 

All experiments in this section were performed on a Sun 630MP workstation; all timings are given 
in seconds on this machine. 

5.1. Preconditioning 

Figure 11 shows the total number of linear iterations performed during the first five non-linear 
iterations of our coupled solver for a variety of preconditioners and grids. It hence gives a measure of 
the amount of work done for a given grid dimension. We have concentrated on Problem 2 here, since 
this generates linear systems which are more difficult to solve and therefore require a more effective 
preconditioner than Problem 1. The figures show that the most effective preconditioner is ALJ(2)/DS. 
Therefore we use this preconditioner to obtain all later results. 

In Figures 1 1 and 12 we have also approximated the matrix B K ' C  in our preconditioner using 
alternating line Jacobi as discussed above. Although this gave good pressure residual convergence, it 
was two or three times as costly as using a diagonal approximation to the matrix. We refer to one or 
two sweeps of alternating line Jacobi applied to the five-point difference operator as PP( 1)  and PP(2) 
respectively. 

Once the preconditioner is fixed, the amount of CPU time required to perform one linear iteration is 
approximately constant for a given grid dimension on a given machine. Thus we use the total number 
of linear iterations performed whilst obtaining a solution to a problem as a measure of the amount of 
work required to obtain that solution. 

5.2. Problem 1 

Figure 13 shows the number of non-linear and total number of linear iterations required to obtain a 
converged solution for our first problem when the linear systems generated are solved to varying levels 

15QI) - 

1 6 2 0 2 6 3 0 9 6 4 4 4 5 5 0 6 6  W Bs 
I 70 

-pmr* 

Figurc 1 1. Problem 2-number of linear iterations rcquircd to perform five non-linear iterations for various prcconditionm; 
Re0 = 2.5 x Id, fi2 = 1.0 x lo-*, e = 1.0 
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soooDr , , , , , , , , , 1 
CRlTm 

i 

F i p  12. Robkm 2--time nqkd  to paform five non-linear itcmths for v a h u  pacoaditionen; Rq = 2.5 x Id, 
~=1.0xlO-4,e=1.0 

of acamcy. For the 17 x 17 and 33 x 33 grids, reducing the linear residual by a factor of lo4 gives 
the best result. 
For the case of the 65 x 65 grid the result is not so clear, since a seemingly anomalous result was 

obtained at this level of linear residual reduction. The reason for this is shown in Figure 14. This shows 
the wnvcrgence history of the preconditioned QMR algorithm for the linear system generated by the 
second of the three non-linear iterations required for solution. The number of linear iterations 
performed is extremely large owing to the fact that convergence to the strict tolerance of 1 .O x 
was not quite achieved despite fairly rapid initial progress. A better preconditioning would alleviate 
this type of difficulty and we hope to explore this possibility in hture work. Notwithstanding, the 
amount of work required appears to be lowest 'in the vicinity of '  The number of non-linear 
iterations required to obtain a solution is extremely low owing to the fact that this problem is not very 
non-linear. The number of non-linear iterations required is also independent of the grid dimension 
provided that we reduce the linear residual sufficiently. Note also that no underrelaxation of the non- 
linear iterates is required for this problem, again owing to the fact that this problem is almost linear. 

5.3. Pmblem 2 

Figure 15 shows the effect of varying the global relaxation factor E for Problem 2 at a rotational 
Reynolds number Reo = 2.5 x lo3. As the relaxation factor is varied away fiom the value of 0.65, the 
number of linear (and nonlinear) iterations increases on both a 17 x 17 and a 33 x 33 grid. 

F i p e  13. Problem l-number of linear itmations rcquind for solution for varying hear m v a g c ~ ~ c t  criterion &; 
B, = 1.0 x lo4, E = 1.0. Numbm on the graph denote the number of non-linear itedons p a f o d  
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Figurc 14. M a n  I- of QMR solver wben things go wrong; 65 x 65 grid, f12 = I .O x lo-*, non-linear 
i d o n  2 (scc Figun 13) 
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This value is then fixed (for this problem at this Reynolds number) and the amount of work done in 
terms of linear residual reduction at each non-linear step is varied (Figure 16). The amount of work 
required decreases as the linear residual reduction approaches 1 .O x lo-’ or 1.0 x then starts to 
rise again as unnecessary extra work is performed in converging the linear system. 

Figure 17 shows the effect of increasing the rotational Reynolds number on the amount of work 
required to solve the linear systems generated by the coupled solver. The figure shows the number of 
linear iterations required to solve the linear systems generated on a 17 x 17 grid by the first five 
iterations of our solver, with no relaxation applied. The solution obtained on this grid does not 
represent an accurate solution of the higher Reynolds number problems. This is due to the much 
narrower boundary layers in this problem. However, the iteration counts obtained give us insight into 
the difficulty of solving the linear systems. On the 17 x 17 grid the amount of work required (in terms 
of number of linear iterations) increases by a factor of 17 as the rotational Reynolds number increases 
from 2-5 x I d  to 2.5 x 104. Similarly, on the 33 x 33 grid the amount of work increases by a large 
factor as the Reynolds number is incmses. The main difficulty is that the linear systems are becoming 
increasingly difficult to solve with increasing Reynolds number. 

Although extensive experiments were not performed for this problem at the rotational Reynolds 
number of 2.5 x 104, we found that an underrelaxation factor of 0.2 was necessary to obtain a 
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F i p  17. problem 2--numk of linear itctations required to perform five non-linear itexations for varying rotational Reynolds 
number Res; PI = 1 . 0  x lo4, p2 = 1.0  x E = 1 . 0 , ) ~  = 1.0 x 

converged solution. Figure 18 shows that the number of non-linear iterations required to solve the 
higher ro ta t io~l  Reynolds number problem is increased by a factor of about four or five over the 
number required for the lower Reynolds number problem. However, the number of linear iterations 
(and hence the CPU time) required has increased by a large amount, a factor of 50-100. In fact the 
average number of linear iterations required per non-linear iteration as we increase the rotational 
Reynolds number by a factor of 10 from 2.5 x lo3 to 2.5 x lo4 (with a linear convergence criterion of 
p2 = 1.0 x has increased fiom 140 to at least 3200 for the 17 x 17 grid and fiom 440 to at least 
4600 for the 33 x 33 grid. Indeed, these linear systems were already extremely difficult to solve at the 
original rotational Reynolds number of 2.5 x lo'. It is because the computational times were so 
great for the highest Reynolds number test case that most of our results were obtained at the lower 
Reynolds number. 

The increased difficulty in solving the linear systems as the Reynolds number increases is due to the 
problem becoming more dominated by rotational effects. The off-diagonal blocks A, and A, become 
increasingly important, reducing the diagonal dominance of the linear systems generated. Figure 6(b) 
shows the eigenvalues of an unpreconditioned matrix at the higher Reynolds number of 2.5 x lo4. 
This matrix was produced after 40 non-linear iterations (the problem was converged after about 65 
iterations). Our linear solver required 1147 iterations to reduce the linear residual of the system of 
dimension 422 by a factor of The spectrum appears to be largely similar to the p t r u m  
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Figrne 18. Problem 2, Re0 = 2.5 x Io'--numbcr of linear iterations requid for solution; 8, = 1.0 x lo4, = 1.0 X lo4, 
E = 0.2, )> = 1 .O. N u m b  on the graph denote the number of non-hear iterPtions performed 

produced at the lower Reynolds number, as does the spectrum of the exact ADS-preconditioned 
matrix (Figure 8). However, when we apply our 'realistic' pmonditioners, diagonal scaling and 
alternating line Jacobi, the differences are more noticeable. Figure 9 shows the eigenvalue spectra for 
the diagonal scaling preconditioner at both Reynolds numbers; Figure 10 gives the corresponding 
spectra for the alternating line Jacobi preconditioner which we have used in our experiments. At the 
higher Reynolds number the spectra for both preconditioners, although similar in form, are noticeably 
more dispersed. 

6. PERFORMANCE COMPARISON OF COUPLED AND SEGREGATED SOLVERS 

Figures 19-21 show the performance of the coupled solver compared with the SIMPLEC algorithm. 
The parameters used with the coupled and segregated solvers are . AI in Tables I and I1 
respectively. The figures show the number of non-linear iterations and CPU times. The convexgence 
criterion of RMS changes was not comparable for the two solution techniques, so instead wc used a 
reduction of the residuals for all the variables by a factor of as a stopping criterion. For the 
SIMPLEC calculations the choice of parameten was based on experience with this computer code and 
results of earlier work rather than any optimization in the present study. SIMPLEC(alpha) refers to the 
SIMPLEC algorithm with a Gosman factor of 50-0, otherwise the value of this pardmeter was zero. 
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Table I. Summary of parameters used with coupled solver for performance comparison 

Parameter 

Reconditioner 

Reynolds number 
Non-linear convergence 
Linear convergence 
Underrelaxation tolerance 
Underrelaxation factor 

Problem 1 

ALJ(2yDS 

Ree 2.2 
Bl 10-4 

10-4  82 
B 3  

- 
& 1 .o 

Pmblem 2 

AU(2)/DS 

2.5 x Id 
10-4 
lo-' 
10-4 
0.65 

Problem 2 

f=J(2YDS 
2.5 104 

10-4 
10-4 
bo 
0.2 

Figure 19 shows the results for Problem 1. Although the SIMPLEC iterates were converging slowly, 
the number of iterations and CPU times were appreciably larger than the coupled solver for this 
problem. The use of a non-zero Gosman factor with the SIMPLEC algorithm did not change the 
convergence behaviour of the method for this problem. 

Figure 20 gives a comparison of the methods for Problem 2 at the rotational Reynolds number of 
2.5 x 1 03. The coupled solver is about five times slower in terms of CPU time to converge than the 
SIMPLEC method. 
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Table 11. Summary of parameters used with segregated solver for performance comparison 

Parameter Roblem 1 Problem 2 Problem 2 
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Reynolds number Ree 2.2 2.5 x Id 2.5 x lo‘ 
Non-linear convergence 8,  10-4 10-4 10-4 

Gosman factor a 0.0 0.0, 50.0 0.0 50.0 
Momentum sweeps 2 2 2 2 
Pressure sulecps “P 3 3 10 3 
u-relaxation 4 0.5 0.5 0.2 0.5 
v-relaxation a, 0.5 0.5 0.2 0.5 
w-relaxation 01, 0.5 0.8 0.2 0.8 
prelaxation 4 0-8 1.0 0.4 I .o 

Figure 21 shows the convergence of the methods for Problem 2 at the higher rotational Reynolds 
number of 2.5 x lo4. Although the coupled solver performed well in terms of number of non-linear 
iterations, the linear systcms generated were extremely difficult to solve, resulting in relatively slow 
convergence. The SIMPLEC algorithm stagnated for the problem on the 17 x 17 grid. On the 33 x 33 
grid a Gosman factor of 50.0 accelerated the convergence of the SIMPLEC algorithm by a factor of 
about 10, compared with the method with a Gosman factor of zero. This clearly emphasizes the 
sensitivity of the segregated approach to parameter choices-using the same Gosman factor a = 50.0 
at the lower Reynolds number (i.e. Figure 20) actually slowed the convergence of the SIMPLEC 
method. 

Finally, Figures 22 and 23 show convergence histories of the SIMPLEC algorithm with a Gosman 
factor of zero and our coupled solver applied to Problem 2 at a rotational Reynolds number of 
2.5 x Id on a 33 x 33 grid. The residuals of the coupled solver are almost monotonically decreasing, 
whereas the convergence of the SIMPLEC iterates appears to be mildly unstable. 

7. CONCLUSIONS 

We have presented a comparison of two quite different solution strategies for the incompressible steady 
Navier-Stokes equations. In the coupled solution method, linearized equations for the momentum and 
continuity equations are solved simultaneously. The segregated algorithm is based on the SIMPLE 
method in which linearized momentum equations are solved successively, followed by a pressure 
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Figure 23. h b l m  2-typical comrergmce history for coupled solva; 33 x 33 grid, Re0 = 2.5 x Id 

correction step which links the continuity equation and a crude approximation to the momentum 
equations. In both cases a staggered grid, hybrid finite difference discretization scheme has been 
employed. The evaluation of the two methods has centred on examples of swirling flows which are 
known to give difficulties using the segregated approach. 

As might be expected, the coupled solver gave convergence in considerably fewer non-linear (or 
outer) iterations than the segregated method. Generally the number of non-linear iterations was 
reduced by at least an order of magnitude using the coupled approach. The performance of the linear 
solver depended on the ‘difficulty’ of the flow problem; our line relaxation preconditioner worked well 
for low Reynolds number flow and in this case our coupled solver was superior (by an order of 
magnitude). The performance of our linear solver deteriorated with increasing Reynolds number and in 
this case a more effective preconditioner seems to be essential if the coupled approach is to be 
competitive with our benchmark SIMPLE approach. 

We emphasize that some caution is required when interpreting the comparisons between solvers- 
even for the limited range of test cases considered here, large variations in performance can arise owing 
to the choice of underrelaxation factors and other parameters in the algorithms. For the most difficult 
problem that we have considered, the rotating cavity at a Reynolds number of 2.5 x lo‘, the 
performance of the SIMPLEC algorithm with the treatment of the v-w coupling proposed by Gosman 
et al. is particularly impressive. It should be noted, however, that such near-optimal performance may 
only be achieved after considerable experimentation. 
Finally, it is interesting to compare our results with those of Hat-~utunian et ~ 1 . ’ ~  These workers 

examined the performance of segregated and coupled finite element algorithms for a number of mn- 
rotating flow problems. In the coupled approach a direct linear solver was used, whilst direct and 
iterative solvers were used with the segregated method. Based on their tests, they concluded that 
segregated methods with iterative solvers are to be preferred for difficult problems. Considering that 
we have specifically chosen test problems for which rotation introduces strong coupling between the 
momentum equations, our results seem to support the conclusions in their work. 
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